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We examine nonconservative systems that cannot
be studied by ordinary methods of analysis of Hamil-
tonian systems. For such systems, we must directly
integrate the fundamental equation of dynamics (see
also [1, 2]). We propose a new, more universal presen-
tation of complete integrable systems (both new and
obtained earlier) in dimensions 5 and 6.

In the general case, it is quite difficul to construct
a theory of integration of nonconservative systems
(even in low-dimensional cases). However, in some
cases where a system possesses certain additional
symmetries, one can express firs integrals as finit
combinations of elementary functions (see [3, 4, 5]).

We present general aspects of the dynamics of
free, multi-dimensional rigid bodies: the notion of the
tensor of angular velocity, joint dynamical equations
of motion on the direct product R™ x so(n), the Eu-
ler and Rivals formulas in the multi-dimensional case,
etc.

We discuss the tensor of inertia of fve- and six-
dimensional rigid bodies. In this activity, we consider
only the cases where four of the fve principal mo-
ments of inertia of a fve-dimensional body coincide,
ie., Iy = I3 = Iy = I5 and fve of the six principal
moments of inertia of a six-dimensional body coin-
cide, i.e., IQ = 13 = I4 = I5 = Iﬁ.

The results presented in activity refer to the case
where the interaction of a homogeneous fl w of a
medium with a fi ed body is concentrated on a four-
dimensional fla part (disk) of the surface of the
fve-dimensional body (and, respectively, on a fve-
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dimensional fla part (disk) of the surface of the six-
dimensional body), and the force acts perpendicularly
to this disk. We systemize these results and present
them in the invariant form. We also introduce an ad-
ditional dependence of the moment of the nonconser-
vative force acting in the system on the angular veloc-
ity. This dependence can be also considered in higher-
dimensional cases.

1 General Preliminaries

1.1 Dynamical symmetries of five- and six-
dimensional bodies

Assume that a fve-dimensional (respectively, six-
dimensional) rigid body © of mass m with a smooth
four-dimensional (respectively, fve-dimensional)
boundary 0O is under the influenc of a nonconser-
vative force field Note that this can be treated as
motion of the body in a resistive medium that fill
up a fve-dimensional (respectively, six-dimensional)
domain of Eucludean space E® (respectively, ES).
Assume that the body is dynamically symmetric;
in this case, there are several representations of its
tensor of inertia: in the fve-dimensional case, in
some coordinate system Dxjxoxsrars attached to
the body, the operator of inertia has either the form

diag{ly, I, I, I>, I5}, (1)
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or the form diag{ly, I1, I3, I3, I3}; respectively; in
the six-dimensional case, in some coordinate system
Dzxixox3x47526 attached to the body, the operator of
inertia has either the form

diag{ly, I2, Iz, I>, I>, I5}, (2

or the form diag{I, I, I3, I3, I3, I3}, or the form
diag{Iy, I, I1, I3, I3, Is}. In the cases (1) and (2), in
the hyperplanes Dxoxszixs and Drxoxsxsxrsze, re-
spectively, the body is dynamically symmetric.

1.2 Dynamics on son) and R™

The configuratio space of a free n-dimensional rigid
body is the direct product of the space R (which de-
scribes the coordinates of the center of mass of the
body) and the rotation group SO(n) (which describes
the rotation of the body about its center of mass):

R" x SO(n) 3)

and has dimension n + n(n — 1)/2 = n(n + 1)/2.
Therefore, the dimension of the phase space is equal
ton(n+1).

In particular, if §2 is the tensor of angular velocity
of a fve-dimensional (respectively, six-dimensional)
rigid body (it is a second-rank tensor; see [2, 3, 4]),
Q € so(5) (respectively, Q2 € so0(6)), then the part of
dynamical equations of motion corresponding to the
Lie algebra so(5) (respectively, so(6)) has the follow-
ing form:

QA + AQ+[Q, QA + AQ] = M, (4)

where A = diag{)\1, A2, A3, A\g, A5} (respectively,
A = diag{ A1, Ao, A3, Mg, As, A6 }), A= (=11 + Io +
I+ I+ 15)/2, 00 = (I — L+ I3 + Iy + I5) /2,
N=U+DL—-Is+Ii+1I5)/2,\s = (I + I +
Is— Iy +15)/2, As = (I1 + o + Is + 14 — I5) /2, or,
respectively, \; = (—Il + L+ I3+ 1, + 15+ 16)/27
Xo=L—L+L+1i+Is+16)/2, A3 = (L1 + o —
I3+ 14+15+16) /2, \y = (1 + 1o+ 13— 14+15+16) /2,
s = (L + L+ I3+ 1y —Is + I)/2, \¢ =
(i + o+ I3+ Iy + Is — I)/2, where M = Mp
is the projection of the moment of exterior forces F
that act on the body in R” (respectively, in R) to the
natural coordinates in the Lie algebra so(5) (respec-
tively, in so(6)), and [ | is the commutator in so(5)
(respectively, in so(6)). The skew-symmetric matrix
corresponding to the second-rank tensor 2 € so(5)
(respectively, {2 € so(6)) can be represented in the
form

0 —wio wyg —wr wy
w10 0 —Wws We —Ww3
—wg Wy 0 —ws we |, (5
wr —Wg  Ws 0 —w1
—W4 w3 —Ww9 w1 0
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where w1, wo, ..., wig are the components of the
tensor of angular velocity with respect to the coordi-
nates of the Lie algebra so(5), or, respectively, in the
form

0 —wis w4 —wi2 w9 —ws
w15 0 —wiz3 w11 —ws wy
—w14 W13 0 —w1p Wwr —ws
Wiz —Ww11 Wi 0 —ws w2 ’
—Wo ws —Ww7 we 0 —Ww1
ws —wy w3 —Ww2 w1 0

(6)
where w1, wo, ..., wis are the components of the
tensor of angular velocity with respect to the coordi-
nates of the Lie algebra so(6).

Obviously, the following equalities hold for all
1,7 =1,...,5 (respectively, ¢, = 1,...,6)

AN—N=1I— I 7

For the calculation of the moment of the exterior
force acting on the body, we must construct the map-

ping

R" x R" — so(n), (8)
that to each pair of vectors

(DN,F) e R" x R" 9)
from R” x R"”

DN = {0,1’2]\[, . ,a:nN}, F = {F1, .. .,Fn}, (10)

where F is the exterior force acting on the body,
puts in correspondence an element of the Lie algebra
so(n), n = 5,6, determined by the auxiliary matrix

0 X9y ... ZTun
(Fl o ... F, ) an
Then the right-hand side of the system (4) takes
the form
M = {xunF5 — x5n Fy, 25N F3 — 238 F5,

xoNnF5 — x5N Fo, x5 F1,
r3NFy — wyn F3, xaN Fo — xoN Fy, —xaN F,
ToN B3 — w3n Fo, xan I, —zan 1}, (12)
for n = 5 and the form

M = {zsnFs — 6N Fs, x6NFy — 24N F,

x3nFe — xenF3, 6N Fo — won Fo,
—x6NF1, Tan F5 — wsn Fu, 258 F3 — 23N F,

TonFs — xsnFo, osNF1, w3N Fy — wan F3,
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TaNFo — xonFy, —x4nF1,

(13)

xonF3 — w3 Fo, 23N F1, —xan F1 },

forn = 6.

Generally speaking, the dynamical systems con-
sidered below are nonconservative and belongs to the
class of systems with variable dissipation with zero
mean (see [7, 8, 9]). We must to examine a part of
the fundamental equation of dynamics, namely, the
Newton equation. In the case considered, this equa-
tion describes the motion of the center of mass, i.e.,
corresponds to the space R™, n = 5, 6:

mweg = F, (14)
where W¢ is the acceleration of the center of mass C'
of the body and m is its mass. Using the multidimen-
sional Rivals formula (note that it can be obtained by
using the operator method) we arrive at the following
equalities:

Wo = WD+Q2DC—|—EDC, Wp =Vp+Qvp, F = Q,

15)
where Wp is the acceleration of the point D, F is the
exterior force acting on the body (in our case F
S), and F is the tensor of angular acceleration (it is a
second-rank tensor).

Thus, the system of equations (4), (14) (its order
is 15 for n = 5 and 21 for n = 6) on the manifold
R"™ x so(n) determines a closed system of dynami-
cal equations of motion of a free f ve-dimensional (re-
spectively, six-dimensional) rigid body under the ac-
tion of an exterior force F. This system can be seg-
regated from the kinematic part of the equations of
motion on the manifold (3) and can be examined sep-
arately.

2 General Problem on the Motion
with a Tracking Force

Consider the motion of a homogeneous, dynamically
symmetric (cases (1) and (2)) rigid body with four-
dimensional (respectively, fve-dimensional) plane
front end (disk) interacting with a medium that fill up
the fve-dimensional (respectively, six-dimensional)
space in the fiel of a resistance force S under the
quasi-stationary conditions (see [9, 10, 11]).

Let (Uv «, ﬁlv /627 63) (respectively,
(v, , b1, B2, 33,04)) be the (generalized) spher-
ical coordinates of the velocity vector of a certain
characteristic point D of the rigid body (let D be
the center of the disk lying on the symmetry axis
of the body), Q2 be the tensor of angular veloc-
ity of the body, and Dxjxoxsxsxs (respectively,

E-ISSN: 2224-2678

273

Maxim V. Shamolin

Dzixoxsryxsxg) be the coordinate system attached
to the body such that the symmetry axis C'D co-
incides with the axis Dx; (here C is the center
of mass) and the axes Dxo, Dxs, Dxy4, Dxs (and
Dzxo, Dxsg, Dxyg, Dxs, Dxg in the six-dimensional
case) lie in the hyperplane of the disk, and
L, I, I3 = I, Iy = I, Is = I, and m
(and I, Iz, I3 = Iz, Iy = I, Is = I, Ig = Iy,
and m in the six-dimensional case) are the principal
moments of inertia and the mass of the body.

We introduce the following notation for the
components with respect to coordinate system
Dx1x2x3x4x5 E52 DC = {—0’,0,0,0,0},

Vp = {vcosa, vsin acos [y, v sin asin (1 cos Fa,

v sin asin 3 sin B2 cos B3, v sin acsin By sin B2 sin G }
(16)
(similar relations can be written for E°).

In the case (1) (and (2)) S= {-5,0,0,0,0}, i.e.,
in the case considered we have F = S.

Then the part of the dynamical equations of mo-
tion of the body corresponding to the motion of the
center of mass (in the space R%) under the assump-
tion that tangent forces vanish can be written in the
form

U cosa — Qu sin o — w1gv sin a cos B+

+wgv sin o sin By cos PBo—
—wryv sin acsin By sin Bo cos B3+
4w4v sin asin (1 sin Fs sin B3+

+0(w%0 + wg + w% + wz) —S/m,

= (17)
v sin « cos 1 + v cos aecos 31 — Blv sin acsin 31+
+w10v €OS ¢ — wg sin arsin 31 cos Go+
+wg sin o sin By sin B cos B3 —

—ws3v sin «:sin (7 sin [y sin B3 —

(18)

U sin acsin By cos B + & cos asin 31 cos Bo+

—0(wows + wewy + wawy) — owig = 0,

+B1v sin v cos B cos Bo—

—Bov sin asin 31 sin fa—wov cos a4-wsv sin a cos B —
—wsw sin acsin By sin Bo cos 3+
4wov sin ae sin Gy sin B sin G3—

—0(wswip — wswy — wawy) + oWy = 0, (19)
¥ sin «esin (31 sin fB cos B3+

+aw cos asin 4 sin B cos B3+

+B1vsin ac cos By sin 3o cos B3+
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+ v sin asin B cos B cos B5—
—Bsv sin asin B sin B sin B3 + wrv cos a—
—wgv sin « cos B+
4wsv sin asin B cos Pa—
—w1 v sin a:sin By sin By sin B3+
+o(wswio + wswg — wiwyg) —owr =0,  (20)
¥ sin asin By sin G9 sin f3+
4w cos asin (1 sin (o sin B3+
+ v sin acos By sin Bo sin B3+
+Byv sin asin By cos Bo sin B3+
+fB5v sin asin By sin B cos B5—
—w4v cos a + w3v sin a. cos B —
—w9 sin a:sin (31 cos [Po+
4w v sin asin B sin By cos (3 —
—0(w3wio + wawg + wiwr) + oy =0,  (21)

where S = s(a)v?, 0 = CD, v > 0.

Similar equations can be also obtained for the six-
dimensional case.

Further, the auxiliary matrix (11) for the calcu-
lation of the moment of the resistance force has the

form
) . (22)

Then the part of dynamical equations of motion cor-
responding to the rotation of the body about its center
of mass (in the Lie algebra so(5)) can be written in the
form

0 @®on 3N Tan TsN
-5 0 0 0 0

(A + X5)w1 + (Mg — As) (wawr + wiwg + waws) = 0,

(23)
()\3 + )\5)@2 + ()\5 — )\3)(M1M5 — wW3wsg — w4w9) = 0,
(24)
(A2 4 A5)wz + (A2 — As) (waw1p — waws —wiwe) = 0,
(25)

(M + As)ia + (hs — A1) (wswio + wawy + wiwr) =

= —Z5N (a7ﬁ1,ﬂ2,ﬁ3, i}) s(a)v?,  (26)
(A3 4+ A)ws + (A3 — A\ (wrwg + wews + wiws) :29,
(A2 +A1)we + (A4 — o) (wsws — wrwig — wiws) L 0),

(28)
()\1 + )\4)&.)7 + ()\1 — )\4)(&)1&)4 — WeW10 — (.U5(.U9) =

= au (.01, Ba s S ) sa)®, (29)
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(A2 4+ A3)ws + (A2 — A3) (wow1o + wswe +wows) = 0,
(30)
(A1 4+ A3)wg + (A3 — A1) (wswip — wswr — wawy) =

Q
= —I3N (a7ﬁ17ﬂ27/637v> 8(04)7)2, (31)
(A1 + X2)wip + (A1 — A2)(wswy + wewr + wawy) =

— oy (%ﬁbﬁ%ﬂ& ?) s ()

Similar equation can be written for ES.

Thus, the phase space of the system (17)—(21),
(23)—(32) of order 15 is the direct product of the f ve-
dimensional manifold and the Lie algebra so(5):

R! x 8% x so(5). (33)

Note that the system (17)—(21), (23)—(32), due to
the dynamical symmetry

Iy =1I3=1s=I5, (34)
possesses the following cyclic firs integrals:
w1 =W, we = wd, w3 =wl,
ws = WY, we = wd, wg = wy. (35)

In the sequel, we consider the dynamics of the
system on zero levels:

W=wd=w)=wl =wi=w)=0. (36)

In the case of a six-dimensional body, we note
that, due to the dynamical symmetry

Iy =13 =14 =I5 = I, (37)

the system possesses the following cyclic firs inte-
grals:

— 0 — 0 — .0 — 0 — 0
w1:W1,WQZW27 w3IUJ3, W4ZW4, W6:w6,

(38)

— .0 — .0 — .0
W7 = Wy, Wg = Wg, W10 = Wy,
_ .0 — .0
(Ull = wll, w13 = (./.}13
In this case, we also consider the dynamics of the
system on zero levels:

W) =wd =uw)=w) =uwd =

(39)

If we consider a more general problem on the mo-
tion of a body under a tracking force T acting along
the straight line C'D = Dz and providing the equal-

1ty

v = const, (40)
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then the system (17)—(21), (23)—-(32) for a fve-
dimensional body (and the corresponding system for
a six-dimensional body) contains the value T —
s(a)v?, o = DC, instead of F}.

Choosing the value T' of the tracking force appro-
priately, we can achieve (40). Indeed, formally ex-
pressing 1" from the system (17)—(21), (23)—(32) in
the case where cos a # 0 we obtain

T = Ty(a, B1, B2, B3, ) = mo(wi+wi+wi+wiy)+

mo sin o

2
1 -
ts(a)v { 31 cos«

Ly <Oé,51352,53, 2)} ;
(41)

Q
Fv (Oé, 617 /827 637 ’U> =
= T5N (04751752,53, v) sin 31 sin B2 sin B3+
QN . )
+xan (047 B1, B2, 33, U) sin 31 sin B2 cos B3+
QN .
+.’E3N (Oé, 61) ﬂQu /837 U) sm /81 COs 52—’_

Q
baan (0,01, o) eosi @)
To deduce Eq. (41), we have used the conditions
(35)—(40).
For a six-dimensional body, Eq. (41) has the form

T = Tv(a,ﬁl, B27ﬂ3,/645 Q) =

= ma(wg + wg + Wiy +wi + wfg,)—i-

r, (o 1) )]
(43)
This procedure can be interpreted as follows.
First, we have transformed the system by using the
tracking force (control) that guarantees that the mo-
tion belongs to the class (40). Second, this procedure
allows one to reduce the order of the system. Indeed,
the system (17)—(21), (23)—(32) generates the follow-
ing independent system of eighth order:

mo sin «

2
1— >
(v 4]5 cos o

avcosacos B — Blv sin o sin 31+

+wipv cosa — owig = 0, (44)
& cos asin B cos By + Blv sin « cos (31 cos o —
—Bgv sin asin (37 sin o —
—wg €os o + owg = 0, (45)
& cos asin (1 sin Bo cos B3+

+B1v sin accos By sin 3o cos B3+
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+ By sin asin B cos B cos B5—

—Bgv sin «sin (7 sin By sin B3+

+wrvcosa — owy =0, (46)
A& cos acsin (1 sin B9 sin B3+
+ 10 sin acos By sin Bo sin B3+
+Byv sin asin By cos Bo sin B3+
+53v sin acsin (1 sin B3 cos B3 —
—wyvcosa+ 0wy = 0, 47)
) Q
hai =~ (0, BB ) slan?, (@9
. Q 2
3]2(.4)7 = T4N | &, 61a ﬁ27 ﬁ37 ; S(Q)U ) (49)
. Q 9
3[2(4.)9 = —I3N | &, ﬁ17/62763a E S(Oé)’U ) (50)
. 0 2
3law10 = 2N | @, B, B2, B3, P s(a)v®, (1)

which, in addition to the constant parameters listed
above, also contains the parameter v.
The system (44)—(51) is equivalent to the follow-
ing system:
Qv cos a4+

+v cos a{wig cos B1 + [(w7 cos P3—
—wy sin B33) sin B2 — wg cos (o] sin By }+
+o{—wig cos B1 + [Wg cos fo—
— (W7 cos B3 — Wy sin (B3) sin fosin 1} = 0, (52)
Blv sin a4+
+v cos af[(wr cos B3 — wy sin f3) sin Ba—
—wg cos fIo] cos 1 — wip sin By }+
+0{[Wg cos B2 — (W7 cos B3—
—wy sin 33) sin (2] cos 1 + wigsin B} = 0,

Byvsin asin B+

(33)

+v cos af [wr cos B3 —
—wy sin B3] cos P2 + wo sin [ }+
+0{—[w7 cos B3 — Wy sin f3] cos Bo—
—wg sin Bo} = 0, (54)
Bgv sin v sin (31 sin G+
+v cos a{ —wy cos B3 — wr sin B3 }+
+o {Wy cos B3 + Wrsin Pz} = 0,

2

—3712$5N

(35)

Wy = (56)

(04,51,52,53,2> s(a),
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2 Q

in = aewa (0,005 ) s(a) (5T
2 Q

i == aaan (BB 0, ) sle), 59)

2

im0 = 5o (.01, T ) s(a). (59)

Similar systems can be also obtained for a six-
dimensional body.

We introduce the new quasi-velocities in the sys-
tem. For this, we transform the values wy, w7, wg, and
wio by the compositions of three rotations as follows:

21
22
<3
24

= TgA(*ﬂl) o T2,3(*ﬁ2)o

Wy
oTia(—f) | 7 |, (60)
wy
w10
10 0 0
01 0 0
Tsa(8) = 0 0 cosf —sing |’
0 0 sing cospf
1 0 0 0
| 0 cos —sinfB 0
Tr3(8) = 0 sin3 cosf8 0 |’
0 O 0 1
cos —sinfB 0 0
sin cos 0 O
T1,2 (/8) - 0 ﬁ 0 1 0
0 0 0 1

Thus, the following relations are valid:

Z1 = wy cos fB3 + wy sin F3,
29 = (w7 cos B3 — wy sin f3) cos o+
+wo sin ﬁQa
23 = [(—wy cos B3 + wy sin [3) sin o+ (61)
+wy cos fa] cos B1 + wip sin fi,
24 = |(wr cos f — wa sin ) sin
—wg cos o] sin B + wig cos .

For the case of a six-dimensional body, the new

quasi-velocities in the system are introduced as fol-
lows. We transform the values ws, wg, w12, w14, and
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w15 by the compositions of four rotations as follows:

21
zZ2
23 | = Tus(—p1) o T3a(—F2)o  (62)
Z4
25
Wy
wy
oTp3(—F33) o T12(—f4) | wi2
wi4
w15

We see from (52)—(59) that on the manifold

Ol = {(Ol,ﬂl,ﬁQ,ﬁg,W4,W7,wg,W10) S RS :

o = gkj, /31 = 7Tll7 ﬁQ = 7Tl2, k,ll,ZQ S Z} (63)

the system cannot be uniquely solved with respect
Q, G, Bg, and 53. Therefore, on the manifold (63) the
uniqueness theorem is formally violated. Moreover,
for even k and any /1, and [, the unambiguity appears
due to the degeneration of the spherical coordinates
(v, o, B1, B2, B3), whereas for odd k the uniqueness
theorem is explicitly violated due to the degeneration
of the firs equation in (52).

This implies that the system (52)—(59) outside the
manifold (63) is equivalent to the following system:

ov s(a)

&= —zs+

Iy <a,51,ﬂ27ﬁ3, i}) ; (64)

315 cos a
2

24237[28

(a)Ty (aaﬂl,@,ﬁ% 2) -

COS v
— (21 + 25 + 23)

sin o

{—2z30y1 <a,51,52?ﬁ3’ SZ) +

ov s(«)

3712511104

Q
I S

Q
b (it D)l (69)

8} COS (x COS D1
—— + (2 + 23) 5
S1n &

2"3 = Z3%4 . .
sin « sin (1

ov s(«)

{24y 1 (a, B1, B2, B33, ?) _

Esina

Q
_ZQAU,2 (Oé, ﬁla ﬁ?a /637 ’U)

cos 1
sin 51
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Q\ cos Q
+21A,3 (04,51,527537 ) - ﬂl}— +x3n (04,51,52,53, ) cos [31 cos Ba+
v /) sin (1 v
v? Q Q .
—373( @)Ay,1 (04751,52,&;, v) ., (66) +aan @, 1, Ba, B3, — | cos B sin B cos B3+
Q . .
dp = 2y e X gy SB AL b +a5N (a,ﬂlyﬂm B3, U) cos (31 sin B3 sin (33,
nao sin v sin Gy
Q
_poosa 1 cosfh Ay (O@ﬁbﬁmﬁs,) =
Lsin o sin By sin 3o v
aQy
ov S(CB) = —I3N (@,ﬁl,,@Q,ﬁ:;, ) SlnﬂQ—i_ (72)
57 . v2 7ﬁlaﬁ27/837 v
31 sin o Q
{ o) b (81,8 o, ) cos oot
X § —24 + 23— + v
sin 01 O
ov Sl Q +x5N <aa/817ﬁ27ﬁ37 > COs ﬁQ Sin/@37
5T ( )Av,?) (OQﬁlaﬁZaﬁi% ’U) X v

315 sin

Q
1 COSﬁQ AU,3 (awghﬁQaﬁ?n) -
x {_Zl Sinﬂl Sinﬂg }+ N
Q
= —T4N <O[, ﬂlu /627 63) ’U> sin 53—’_

2

b sl@), (,51,@,53, o) @

Q
+x5N8 <Oé, ﬁla ﬁ?a ﬁ?n ’U> COs ﬁ?w

. Cos & cos « cos (31
Rl = 2124 — k1”3 :
s o sin av sin and the function T';, (o, 31, B2, B33, /v) can be repre-
cosae 1 cos(s sented in the form (42).

+2z12

Here and in the sequel, the dependence

2= - -
sin « sin 31 sin
b sin B on the groups of variables («, (31,2, 03,8/v)

ov s(@) ) ( 81, B2, Bs Q) % is considered as the composite dependence on
3l sina ’ e (OK,ﬁl,ﬁQ,ﬁ3,21/U,ZQ/U,Z3/U,Z4/'U> due to (61)
cos B 1 cosfs ' A .simila? system can be obtained for a six-
X %4 — 237 + 22— . - dimensional rigid body.
sin 31 sin 31 sin By

The violation of the uniqueness theorem for the
system (52)—(59) on the manifold (63) for odd k£ can
be interpreted as follows: for odd & and for almost all

(@B (aum G L) (69)

CoS points of the manifold (63), there exists a nonsingular

B = 23 S phase trajectory of the system (52)—(59) that intersects
the manifold (63) orthogonally and also there exists a
v 8.(0‘) (a, By, B2, B, Q) ’ (69) phase trajectory that completely coincides with this
31> sina points at all moments of time. However, these trajec-
Gy = Cos & tories are distinct since they correspond to different
2= T2 sin o sin 51 values of the tracking force.
ov  s(a) ( )
I «, ) ) ) ) 70
3 smasin g B, B, s 3 Case where the Moment of Non-
e — cosa conservative Forces Is Indepen-
fs == sin asin (1 sin By .
dent of the Angular Velocity Ten-
ov s(a@) ( 81 . 3 ) sor
31, sin asin 3y smﬂ G P12 73,
71
Q 7D 3.1 Reduced system
AU,I <a7/617ﬂ27637) = .. . . .

v Similarly to the choice of Chaplygin analytic func-
QN tions (see [12, 13]), we choose the dynamical func-
= —I2N <a)ﬂlaﬁ27537 ’U> Slnﬁl—’_ tions S, TaN, L3N, TAN, and T5N in the fOHOWng

E-ISSN: 2224-2678 277 Volume 19, 2020



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2020.19.31

form:
s(a) = Bcosa,

TN <0é751,527537 S) =
= wano(a, B1, B2, B3) = Asina cos f,
T3N (aa/BDBQaﬁi’n ?) =
= z3no0(@, B1, B2, F3) = Asinasin () cos B2, (73)
T4N (04751,52,53, SZ) =
= z4no(a, B1, B2, B3) = Asin asin 31 sin 3 cos 33,
T5N (04751,527@% S) =

= x5no0(a, b1, B2, B3) = Asinasin £ sin B2 sin 33,

where A, B > 0and v # 0. This representation shows
that in the system considered, the moment of noncon-
servative forces is independent of the angular velocity
(it depends only on the angles «, 51, B2, and (33).

In this case, the func-

tions Ty (o, 51, P2, B3, Q/v), and
Av,s (avﬁlvﬁ%ﬁi’nﬁ/v)a s = 17273a in the Sys-
tem (64)—(71), have the following form:

Q
I\’L) (a7/817ﬂ27/837 U) = ASil’lO&,

Q
Av,s <a7ﬁ17527ﬁ3a ’U> = Oa s = 172a3' (74)

In the six-dimensional case, the dynamical func-
tions Ton, L3N, L4N, L5N, and xgn have the form

ToN (avﬁ1752,ﬂ3,ﬁ4, ?) _

= zano(a, B1, B2, B33, 1) = Asinacos 3y,
Q
3N (a,ﬂl,ﬂz,ﬁs,ﬁ4,v> =
= x3no0(a, B1, B2, B3, f1) = Asinasin By cos [,
T4N (aa/@17527/837ﬁ47i)2> =
= 1'4]\]0(&,51,,82,63,[34) =

= Asin asin (1 sin (s cos (33,
Q

5N (a7/817ﬂ27/837647v> =

= w5n0(e, 1, B2, 33, Ba) =

= Asin «sin (1 sin 5 sin (33, cos (4,

(75)
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Q
o (0 61,2, s, ) =
= xGNO(OC?ﬁlvﬂ%ﬁ:ia 54) =

= Asin asin 1 sin (G5 sin B3 sin [y.

Then, due to the nonintegrable constraint (40),
outside the manifold (63) the dynamical part of the
equations of motion (the system (64)—(71)) takes the
form of the analytic system

cABv .
o = —z4 + sin a, (76)
2
ABuv? cos
/ . 2,2, .2
24 = sinacosa— (27 +25+25)——, (77
4 3[2 ( 1 2 3) sin o Y ( )
p COS (v 9 9, COSCOs B
25 = 2324 + (21 + 25) = : 78
37 “*dina (21 2)sma sin 31’ (78)
, CoS (v cos «v cos (31
2o = 2224 — 2223 . -
sin a sin v sin (1
gcosa 1 cosfa
R . . 9 (79)
sin « sin 31 sin (o
, cos o cos a cos 31
21 = 2124 — 2123 - =
sin « sin (31
cosa 1 cosfh
2122 : : ) (80)
sin «¢ sin 31 sin B9
cos
B =2m—) (81)
sin a
coS (v
By = —2zg—v, (82)
sin o sin 1
coS (v
B3 = 21 (83)

sin arsin 31 sin 3o

We introduce the dimensionless variables, param-
eters, and differentiation as follows:

AB
zk — novzk, k=1,2,3,4, n(Q) = —, (84)
31
b=ong, < ->=ngv<>.
We reduce the system (76)—(83) to the form
o =—z4+bsina, (85)
/ . 9 9 . 9. COSCY
= — 86
zy = sinacosa — (2] +z2+23)sina, (86)
p cos o 9 9.COSacos B
= 87
BT B na + e+ Z2)sina sin 31’ ®7)
, cos cos « cos 31
R = 2224 — 2273 - -
sin sin «¢ sin 3q
scosa 1 cosfa (88)

—Z1 - -
Lsin v sin B sin B
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COS (¢

, cos a cos 31
21 = R124 — 2123
sin

sin « sin (q

cosa 1 cosfh

Tz sin o sin B sin By’ (89)
B = 2y, (90)

S1n &«
&:—QQ%EE? 1)
ﬂé — COoS & 92)

sin arsin 31 sin 3o

We see that the eighth-order system (85)—(92),
which can be considered on the tangent bundle 7'S*
which can be considered on the tangent bundle S?,
contains an independent seventh-order system (85)—
(91) on its own seven-dimensional manifold.

In the case of a six-dimensional body, the corre-
sponding system of dynamical equations takes the fol-
lowing form:

!/

o = —z5 + bsina, (93)

. cos &
2t =sinacosa — (25 + 25 + 22 + 25)——, (94)
sin o

Cos & cos « cos (31

+ (z%%—z% +z§)

zfl = 2425

: . —, (95)

sin « sin «v sin (1
, cos «

Z3 = Z3%5 S — Z3%

cos a cos (31
344 . -
ina sin « sin (3

cos (35
sin o sin 31 sin 3y’

cosa 1

—(2} + 23) (96)

cos « cos a cos (31

/
Zo9 = R2725— — 29z
sin ¢«

4 .
sin v sin Gy

cos (o
sin v sin 1 sin B

cosa 1

+2923

cos (33
sin «v sin 31 sin B2 sin B3’

scosa 1 1
#1

7

COS &

, cos « cos (31
Z] = 2125
s

. — Z1%24— -
ina sin « sin (q

cosa 1 cosfs

+2123— ; -
S sina sin (31 sin 3y

cos (33
sin o sin 31 sin 3o sin 33

B =z

cosa 1 1

—Z122 (98)

COos «x

—, 99)
sin av
/ CoS

By = —z (100)

sinasin 81
cos v

By = 2z (101)

sin asin 3y sin 3o’
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y coS (v

. 102
A1 sin asin (1 sin (s sin (3 (102)

For the complete integration of the system (85)—
(92), we need, in the general case, seven independent
firs integrals. However, after the substitution

wy = 24, w3 =/ 2] + 23 + 23,

29 23
We = —, W = —/——, (103)
1 NETE
the system (85)—(92) splits as follows:
o = —wy + bsina, (104)
w) = sina cos a — w3 Cf)sa, (105)
S1n &
wh = wywy (106)
sin o
wé — d2(w47w37w227 wl;avﬁbﬁ?aﬁ?))x
14w3 cos B2
/ “’22 sin 2 (107)
B = da(wa, w3, wa, wi; a, B, B2, 43),
w) = dl(w4,w3,w22, wy; o, B, B2, B3) X
1+w 15
o s (108)
B = di(wa, w3, wa, wi; a, B, B2, B3),
B3 = d3(wa, w3, wo, wi; a, Br, B, B3),  (109)
di(wg, w3, wa, wr; e, B, B2, f3) =
— Z3(w4aw37w23wl)g?sga
do(wy, w3, wo, wi; @, B, P2, B3) =
-7 ( cos (110)
— 2 w4’w3’w2’w1)sinasinﬁl’
d3(wg, w3, wa, wr; e, B, B2, f3) =
= Zl(w4’w3’ wz’wl)sinasi?sﬁ?sinﬂg :
Moreover,
2 = Zp(wg, w3, wa, w1 ), k=1,2,3, (111)

due to the substitution (103).

We see that the eighth-order system splits into
independent subsystems of lower orders: the system
(104)—(106) of third order and the systems (107) and
(108) of second order (of course, after a change of the
independent variable). Thus, for the complete integra-
bility of the system (104)—(109) we need two indepen-
dent firs integrals of the system (104)—(106), one firs
integral of each of the systems (107) and (108), and
an additional firs integral that “attaches” Eq. (109).

Note that the system (104)—(106) can be consid-
ered on the tangent bundle 7'S? of the twodimensional
sphere S2.

Volume 19, 2020



WSEAS TRANSACTIONS on SYSTEMS
DOI: 10.37394/23202.2020.19.31

In the case of a six-dimensional rigid body, the
corresponding change of variables has the form

w5 = 25,
wi=\[A+B+B 43 ws=2,  (112)

21’
z3 Z4

VTR T VAR
The system (93)—(102) splits as follows:

o = —ws + bsina, (113)
5—Slnacosa—wicosa (114)
sin «
w) = waws cosa (115)
sina’

wy =

= d3(ws, wa, w3, wa, w1; &, B, B2, B3, Ba) X
1+w? cos fBs

w3 sin (3
B = d3(ws, wa, w3, wa, wi; o, 1, B2, 33, Ba),
(116)
wh =

— d2(UJ5,’LU4, w3, W2, Wi, a’ﬁ17ﬁ27ﬁ37/64)x

2
x 1+w3 cos B2

wg  sinfa?
B5 = da(ws, wy, w3, w2, w15, B, B2, B3, Ba),
(117)
w) =

= di(ws, wa, w3, wa, w1; @, B, B2, B3, f1) X
1+wf cos 1

w1 sinB1”
Bi == dl(w57w47w37w27w1;a)517/627637ﬂ4)7
(118)
61/1 == d4(w57w47w37w27w1;a)517/62763754)7
(119)

di(ws, wa, w3, wa, wi; &, B1, B2, B3, Ba) =

= Zy(ws, wy, w3, w2, w1) G,

do(ws, wa, w3, wo, wi; &, B1, B2, B3, Ba) =

_ COS &
= —Z3(ws, w4, W3, W2, W1) 55 ein B>

d3(w57w47w37w27w1; 047617527/83764) =

_ COS &
= Zg(w57w4,w37w2,w1)m,

da(ws, wa, w3, w2, wi; o, Br, B2, B3, Ba) =
= _Zl (105, W4, W3, W2, wl)sinasinﬁcf:i?lﬂz sin O3

(120)

and
2k = Zk;('lU5,U]4,'lU3,w2,’LU1), k= 1a273343 (121)

due to the substitution (112).

3.2 Complete list of invariant relations

In this section, we present results for a fve-
dimensional rigid body; for six-dimensional bodies,
results are similar.
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The system (104)—(106) is similar to the system
of equations of dynamics of a three-dimensional rigid
body in a nonconservative force field

First, to the third-order system (104)—(106), we
put in correspondence the following nonautonomous
second-order system:

dw, __ sinacos a—w% cos a/ sin

doe — —w4+bsin o ’ (122)
dws __ w3wacosa/sina
da —w4+bsin o

Using the substitution 7 = sin «, we rewrite the
system (122) in the algebraic form

dwy _ T— w3/‘r
dr = —wa+br?
dws __ wswg/T (123)
dr = —wa+br”

Further, introducing the homogeneous variables
by the fornulas

W3 = U7, W4 = ULT, (124)

we reduce the system (123) to the following form:

du2 1_7/“% du1 U1U2
+ ug = —wt T +u; = T tb (125)

which is equivalent to the following:

dug __ 1_U%+ug_bu2 dui _ 2ujus—bu;
Tdr = —uwab 0 Tdr T T —uatb - (126)

To the second-order system (126), we put in cor-
respondence the nonautonomous first-orde equation

dUQ N 1—u%—|—u%—bu2

— = 127
duy 2uiug — bu; (127)

which can be easily reduced to the complete differen-
tial form:

=0. (128)

p u3 +ud — bug + 1
U1

Thus, Eq. (127) has the following firs integral:

u3 +ud — bug + 1
U1

= (C = const, (129)

which in the old variables has the form

w3 4+ w3 — bwy sina + sin? a

= (4 = const.
(130)

w3 sin a

Remark 1 Consider the system (104)-(106) with
variabledissipationwith zero mean (see [14, 15, 16]),
which becomes conservative to 0:

/ 2cosa
(0% —Wyq, w4—81nacoso¢7w3sma, (131)

cos o
’11)3 = W3Wagp ¢ -
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It possesses the following two analyfiist integrals: then the right-hand side of Eq. (139) becomes
wi + wj + sin? a = Cf = const (132) 1 d(b? — 4r7) B
ws sina = C5 = const (133) ! (07 —4r}) £ C1 v b —dr
Obvio_usly, the .rati(_) of two first integrals (132) and —b/ r1 _
o e e ssem 131 o SR ﬁ

w3 + wi — bwy sin o + sin” o (134) :—lln \/b2 il ibfl (141)
2 01 ’
and (133) are not first integrals of the system (104)—
(106), but their ratio is a first integral of the system 7 / drs 2 a2
— 1 = ) T3 == 1 Tl.
(104)—(106) for any. m(m Loy

(142)
In the calculation of the integral (142), the follow-
ing three cases are possible.

Further, we fin an explicit form of the additional
firs integral of the third-order system (104)—(106).
We transform the invariant relation (129) for uy # 0

as follows: 5> 2.
1
b\?2 C1\? b +C3 L =——F+———Xx
- = - —] = —1. (1 2 _
(Uz 2)+<u1 2) 1 (135) 202 — 4
We see that the parameters of this invariant rela- Vb2 — 4+ /b -} C
tions must satisfy the condition xIn s+ Cy - 02— 4 +
b+ C%2—4>0, (136) 1
e
N
and the phase space of the system (104)—(106) splits 2vVb5 —4
into the family of surfaces determined by Eq. (135). - /2 12
Thus, due to the relation (129), the firs equation x 1 3 +  (143)
of the system (126) has the form r3 &+ Ch b2 -4
dUQ 2(1 — bUQ + u%) — ClUl(Cl,UQ) +const.
T— = , (137)
dr —u2+0 Il b<2
1 1 . xChirs + b?
Ur(Ch,ug) = ={C1 £1/C? — 4(ud — bus + 1)}; I = arcsin ——————L 4+ const. (144
{(Cra) = GO /2 — (03 - b (gg) VR T s £ Oy (149
here the integration constant C' is define by the con- . b=2.
dition (136).
Therefore, the quadrature that determines the ad- b —r?
ditional firs integral of the system (104)—(106) has the I = :Fi + const. (145)
fi C (7‘3 + Cl)
orm
/ dr (b — us)dus 139 Returning to the variable
2 1—buQ—|—u2) Cl{W}/Q’ wy b
= (146)
sima 2

W = C1 £ \/CF — 4(u} — bus + 1).

we obtain the fina formulas for I5:
Obviously, the left-hand side (up to an additive l.b>2.

constant) is equal to In | sin «|. If
1 Vb2 — 4+ 2r C
b sy h=-———=1n |+
up — 5 =1, b = b+ CF — 4, (140) 202 — 4 \/b%—4r%icl b2 —4
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1 Vb2 —47F2m &)
+ \/27111 F 5 +
2vbr =4 -2+ Vb4
(147)
—+const.
. b<2.
1 +C1\/bF — 4?2 + 13
I = 5 arcsin + const.
va—b by (y/b3 — 4r2 + C)
(148)
. b=2
2
L = o + const. (149)

F
Cl(\/b% - 47’% + Cl)

Thus, we have found the additional firs integral
for the third-order system (104)—(106) and hence we
have a complete list of firs integrals, which are tran-
scendental functions of their phase variables.

Remark 2 In the expression of the first integral we

must formally substitute the left-hand side of the first

integral (129) instead of’; .

Then the additional firs integral takes the follow-
ing structure (which is similar to the transcendental
firs integral in the fla dynamics):

Wy w3

In|sina| + G (sin «, ) = (9 = const.

(150)
Thus, for the eighth-order system (104)—(109),
we have found two independent firs integrals. As
was said above, for its complete integrability, we need
one firs integral for the separated systems (107) and
(108) and an additional firs integral that “attaches”
Eq. (109).
To fin a firs integral of separated systems
(107) and (108), we consider the following first-orde
nonautonomous equations:

sin o’ sin

dws 1+ wg cos (s
dps sin 3,

The last equalities lead to the required invariant
relations

V14 w?

sin (3

=1,2. (151)

Ws

= (U542 =const, s = 1,2. (152)
Further, to fin the additional firs integral that

“attaches” Eq. (109), we put in correspondence to

Egs. (109) and (107) the nonautonomous equation

d
w2 _ —(1 + w3) cos fa.

o (153)
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Since, due to (152),

C4cos[32:i\/CZ—1—w§, (154)

we have
— S =F—(14+w3)\/C? — 1 — w2 155
s $C'4( 2\ Cf 2 (155)

Then, integrating the last equality, we arrive at the
following quadrature:

Cydw
F(o+Co) = [ i . (156)
(14 w3)y/CF —1— w3
C's = const.
Integrating this, we obtain the equality
Cyw
Fig(hs + Cs) = e, (157)

C? —1—wl

C'5 = const.

Finally, we obtain the additional firs integrals
that “attaches” Eq. (109):

Carwo
\/C? — 1 — w?

Thus, in the case considered, the system of dy-
namical equations (17)—(21), (23)—(32) under the con-
dition (73) has 12 invariant relation: the analytic non-
integrable constraint (40), the cyclic firs integrals (35)
and (36), the firs integral (130), the firs integral ex-
pressed by the relations (143)—(150), which is a tran-
scendental function of the phase variables (it is ex-
pressed as a finit combination of elementary func-
tions), and the transcendental firs integrals (152) and
(158).

arctg 433 = C5, C5 = const. (158)

Theorem 3 The system (17)—(21), (23)—(32) under
the conditions (40), (73), (36) possesses 12 invari-
ant relations (a complete set). Five of these relations
are transcendental functions (from the point of view of
complex analysis). All these relations are expressed as
finite combinations of elementary functions.

A similar theorem is also valid for the six-
dimensional case.
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4 Conclusion

Activity contains a review of results on the integrabil-
ity of equations of motions in the dynamics of fve-
and six-dimensional rigid bodies in nonconservative
force fields Such problems are governed by dynami-
cal systems with variable dissipation with zero mean.
Moreover, such systems often possess a complete list
of firs integrals expressed through elementary func-
tions.

We also presented a method of reduction of sys-
tems with right-hand sides containing polynomial of
trigonometric functions to systems with polynomial
right-hand sides, which allows one to fin firs inte-
grals (or prove their absence) for systems of a more
general form, not only those having specifie symme-
tries (see also [9, 10, 12]).
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