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We examine nonconservative systems that cannot
be studied by ordinary methods of analysis of Hamil-
tonian systems. For such systems, we must directly
integrate the fundamental equation of dynamics (see
also [1, 2]). We propose a new, more universal presen-
tation of complete integrable systems (both new and
obtained earlier) in dimensions 5 and 6.

In the general case, it is quite difficul to construct
a theory of integration of nonconservative systems
(even in low-dimensional cases). However, in some
cases where a system possesses certain additional
symmetries, one can express firs integrals as finit
combinations of elementary functions (see [3, 4, 5]).

We present general aspects of the dynamics of
free, multi-dimensional rigid bodies: the notion of the
tensor of angular velocity, joint dynamical equations
of motion on the direct product Rn × so(n), the Eu-
ler and Rivals formulas in the multi-dimensional case,
etc.

We discuss the tensor of inertia of f ve- and six-
dimensional rigid bodies. In this activity, we consider
only the cases where four of the f ve principal mo-
ments of inertia of a f ve-dimensional body coincide,
i.e., I2 = I3 = I4 = I5 and f ve of the six principal
moments of inertia of a six-dimensional body coin-
cide, i.e., I2 = I3 = I4 = I5 = I6.

The results presented in activity refer to the case
where the interaction of a homogeneous fl w of a
medium with a fi ed body is concentrated on a four-
dimensional fla part (disk) of the surface of the
f ve-dimensional body (and, respectively, on a f ve-

dimensional fla part (disk) of the surface of the six-
dimensional body), and the force acts perpendicularly
to this disk. We systemize these results and present
them in the invariant form. We also introduce an ad-
ditional dependence of the moment of the nonconser-
vative force acting in the system on the angular veloc-
ity. This dependence can be also considered in higher-
dimensional cases.

1 General Preliminaries

1.1 Dynamical symmetries of five- and six-
dimensional bodies

Assume that a f ve-dimensional (respectively, six-
dimensional) rigid body Θ of mass m with a smooth
four-dimensional (respectively, f ve-dimensional)
boundary ∂Θ is under the influenc of a nonconser-
vative force field Note that this can be treated as
motion of the body in a resistive medium that fill
up a f ve-dimensional (respectively, six-dimensional)
domain of Eucludean space E5 (respectively, E6).
Assume that the body is dynamically symmetric;
in this case, there are several representations of its
tensor of inertia: in the f ve-dimensional case, in
some coordinate system Dx1x2x3x4x5 attached to
the body, the operator of inertia has either the form

diag{I1, I2, I2, I2, I2}, (1)
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or the form diag{I1, I1, I3, I3, I3}; respectively; in
the six-dimensional case, in some coordinate system
Dx1x2x3x4x5x6 attached to the body, the operator of
inertia has either the form

diag{I1, I2, I2, I2, I2, I2}, (2)
or the form diag{I1, I1, I3, I3, I3, I3}, or the form
diag{I1, I1, I1, I3, I3, I3}. In the cases (1) and (2), in
the hyperplanes Dx2x3x4x5 and Dx2x3x4x5x6, re-
spectively, the body is dynamically symmetric.

1.2 Dynamics on so(n) and Rn

The configuratio space of a free n-dimensional rigid
body is the direct product of the space Rn (which de-
scribes the coordinates of the center of mass of the
body) and the rotation group SO(n) (which describes
the rotation of the body about its center of mass):

Rn × SO(n) (3)
and has dimension n + n(n − 1)/2 = n(n + 1)/2.
Therefore, the dimension of the phase space is equal
to n(n + 1).

In particular, if Ω is the tensor of angular velocity
of a f ve-dimensional (respectively, six-dimensional)
rigid body (it is a second-rank tensor; see [2, 3, 4]),
Ω ∈ so(5) (respectively, Ω ∈ so(6)), then the part of
dynamical equations of motion corresponding to the
Lie algebra so(5) (respectively, so(6)) has the follow-
ing form:

Ω̇Λ + ΛΩ̇ + [Ω, ΩΛ + ΛΩ] = M, (4)
where Λ = diag{λ1, λ2, λ3, λ4, λ5} (respectively,
Λ = diag{λ1, λ2, λ3, λ4, λ5, λ6}), λ1 = (−I1 + I2 +
I3 + I4 + I5)/2, λ2 = (I1 − I2 + I3 + I4 + I5)/2,
λ3 = (I1 + I2 − I3 + I4 + I5)/2, λ4 = (I1 + I2 +
I3− I4 + I5)/2, λ5 = (I1 + I2 + I3 + I4− I5)/2, or,
respectively, λ1 = (−I1 + I2 + I3 + I4 + I5 + I6)/2,
λ2 = (I1−I2 +I3 +I4 +I5 +I6)/2, λ3 = (I1 +I2−
I3+I4+I5+I6)/2, λ4 = (I1+I2+I3−I4+I5+I6)/2,
λ5 = (I1 + I2 + I3 + I4 − I5 + I6)/2, λ6 =
(I1 + I2 + I3 + I4 + I5 − I6)/2, where M = MF

is the projection of the moment of exterior forces F
that act on the body in R5 (respectively, in R6) to the
natural coordinates in the Lie algebra so(5) (respec-
tively, in so(6)), and [ ] is the commutator in so(5)
(respectively, in so(6)). The skew-symmetric matrix
corresponding to the second-rank tensor Ω ∈ so(5)
(respectively, Ω ∈ so(6)) can be represented in the
form 



0 −ω10 ω9 −ω7 ω4

ω10 0 −ω8 ω6 −ω3

−ω9 ω8 0 −ω5 ω2

ω7 −ω6 ω5 0 −ω1

−ω4 ω3 −ω2 ω1 0




, (5)

where ω1, ω2, . . . , ω10 are the components of the
tensor of angular velocity with respect to the coordi-
nates of the Lie algebra so(5), or, respectively, in the
form




0 −ω15 ω14 −ω12 ω9 −ω5

ω15 0 −ω13 ω11 −ω8 ω4

−ω14 ω13 0 −ω10 ω7 −ω3

ω12 −ω11 ω10 0 −ω6 ω2

−ω9 ω8 −ω7 ω6 0 −ω1

ω5 −ω4 ω3 −ω2 ω1 0




,

(6)
where ω1, ω2, . . . , ω15 are the components of the
tensor of angular velocity with respect to the coordi-
nates of the Lie algebra so(6).

Obviously, the following equalities hold for all
i, j = 1, . . . , 5 (respectively, i, j = 1, . . . , 6)

λi − λj = Ij − Ii. (7)

For the calculation of the moment of the exterior
force acting on the body, we must construct the map-
ping

Rn ×Rn −→ so(n), (8)

that to each pair of vectors

(DN, F) ∈ Rn ×Rn (9)

from Rn ×Rn

DN = {0, x2N , . . . , xnN}, F = {F1, . . . , Fn}, (10)

where F is the exterior force acting on the body,
puts in correspondence an element of the Lie algebra
so(n), n = 5, 6, determined by the auxiliary matrix

(
0 x2N . . . xnN

F1 F2 . . . Fn

)
. (11)

Then the right-hand side of the system (4) takes
the form

M = {x4NF5 − x5NF4, x5NF3 − x3NF5,

x2NF5 − x5NF2, x5NF1,

x3NF4 − x4NF3, x4NF2 − x2NF4,−x4NF1,

x2NF3 − x3NF2, x3NF1,−x2NF1}, (12)

for n = 5 and the form

M = {x5NF6 − x6NF5, x6NF4 − x4NF6,

x3NF6 − x6NF3, x6NF2 − x2NF6,

−x6NF1, x4NF5 − x5NF4, x5NF3 − x3NF5,

x2NF5 − x5NF2, x5NF1, x3NF4 − x4NF3,
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x4NF2 − x2NF4,−x4NF1,

x2NF3 − x3NF2, x3NF1,−x2NF1}, (13)

for n = 6.
Generally speaking, the dynamical systems con-

sidered below are nonconservative and belongs to the
class of systems with variable dissipation with zero
mean (see [7, 8, 9]). We must to examine a part of
the fundamental equation of dynamics, namely, the
Newton equation. In the case considered, this equa-
tion describes the motion of the center of mass, i.e.,
corresponds to the space Rn, n = 5, 6:

mwC = F, (14)

where wC is the acceleration of the center of mass C
of the body and m is its mass. Using the multidimen-
sional Rivals formula (note that it can be obtained by
using the operator method) we arrive at the following
equalities:

wC = wD+Ω2DC+EDC, wD = v̇D+ΩvD, E = Ω̇,
(15)

where wD is the acceleration of the point D, F is the
exterior force acting on the body (in our case F =
S), and E is the tensor of angular acceleration (it is a
second-rank tensor).

Thus, the system of equations (4), (14) (its order
is 15 for n = 5 and 21 for n = 6) on the manifold
Rn × so(n) determines a closed system of dynami-
cal equations of motion of a free f ve-dimensional (re-
spectively, six-dimensional) rigid body under the ac-
tion of an exterior force F. This system can be seg-
regated from the kinematic part of the equations of
motion on the manifold (3) and can be examined sep-
arately.

2 General Problem on the Motion
with a Tracking Force

Consider the motion of a homogeneous, dynamically
symmetric (cases (1) and (2)) rigid body with four-
dimensional (respectively, f ve-dimensional) plane
front end (disk) interacting with a medium that fill up
the f ve-dimensional (respectively, six-dimensional)
space in the fiel of a resistance force S under the
quasi-stationary conditions (see [9, 10, 11]).

Let (v, α, β1, β2, β3) (respectively,
(v, α, β1, β2, β3, β4)) be the (generalized) spher-
ical coordinates of the velocity vector of a certain
characteristic point D of the rigid body (let D be
the center of the disk lying on the symmetry axis
of the body), Ω be the tensor of angular veloc-
ity of the body, and Dx1x2x3x4x5 (respectively,

Dx1x2x3x4x5x6) be the coordinate system attached
to the body such that the symmetry axis CD co-
incides with the axis Dx1 (here C is the center
of mass) and the axes Dx2, Dx3, Dx4, Dx5 (and
Dx2, Dx3, Dx4, Dx5, Dx6 in the six-dimensional
case) lie in the hyperplane of the disk, and
I1, I2, I3 = I2, I4 = I2, I5 = I2, and m
(and I1, I2, I3 = I2, I4 = I2, I5 = I2, I6 = I2,
and m in the six-dimensional case) are the principal
moments of inertia and the mass of the body.

We introduce the following notation for the
components with respect to coordinate system
Dx1x2x3x4x5 E5: DC = {−σ, 0, 0, 0, 0},
vD = {v cosα, v sinα cosβ1, v sinα sinβ1 cosβ2,

v sinα sinβ1 sinβ2 cosβ3, v sinα sinβ1 sinβ2 sinβ3}
(16)

(similar relations can be written for E6).
In the case (1) (and (2)) S = {−S, 0, 0, 0, 0}, i.e.,

in the case considered we have F = S.
Then the part of the dynamical equations of mo-

tion of the body corresponding to the motion of the
center of mass (in the space R5) under the assump-
tion that tangent forces vanish can be written in the
form

v̇ cosα− α̇v sinα− ω10v sinα cosβ1+

+ω9v sinα sinβ1 cosβ2−
−ω7v sinα sinβ1 sinβ2 cosβ3+

+ω4v sinα sinβ1 sinβ2 sinβ3+

+σ(ω2
10 + ω2

9 + ω2
7 + ω2

4) = −S/m, (17)

v̇ sinα cosβ1 + α̇v cosα cosβ1 − β̇1v sinα sinβ1+

+ω10v cosα− ω8v sinα sinβ1 cosβ2+

+ω6v sinα sinβ1 sinβ2 cosβ3−
−ω3v sinα sinβ1 sinβ2 sinβ3−

−σ(ω9ω8 + ω6ω7 + ω3ω4)− σ ˙ω10 = 0, (18)

v̇ sinα sinβ1 cosβ2 + α̇v cosα sinβ1 cosβ2+

+β̇1v sinα cosβ1 cosβ2−
−β̇2v sinα sinβ1 sinβ2−ω9v cosα+ω8v sinα cosβ1−

−ω5v sinα sinβ1 sinβ2 cosβ3+

+ω2v sinα sinβ1 sinβ2 sinβ3−
−σ(ω8ω10 − ω5ω7 − ω2ω4) + σω̇9 = 0, (19)

v̇ sinα sinβ1 sinβ2 cosβ3+

+α̇v cosα sinβ1 sinβ2 cosβ3+

+β̇1v sinα cosβ1 sinβ2 cosβ3+
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+β̇2v sinα sinβ1 cosβ2 cosβ3−
−β̇3v sinα sinβ1 sinβ2 sinβ3 + ω7v cosα−

−ω6v sinα cosβ1+

+ω5v sinα sinβ1 cosβ2−
−ω1v sinα sinβ1 sinβ2 sinβ3+

+σ(ω6ω10 + ω5ω9 − ω1ω4)− σω̇7 = 0, (20)

v̇ sinα sinβ1 sinβ2 sinβ3+

+α̇v cosα sinβ1 sinβ2 sinβ3+

+β̇1v sinα cosβ1 sinβ2 sinβ3+

+β̇2v sinα sinβ1 cosβ2 sinβ3+

+β̇3v sinα sinβ1 sinβ2 cosβ3−
−ω4v cosα + ω3v sinα cosβ1−
−ω2v sinα sinβ1 cosβ2+

+ω1v sinα sinβ1 sinβ2 cosβ3−
−σ(ω3ω10 + ω2ω9 + ω1ω7) + σω̇4 = 0, (21)

where S = s(α)v2, σ = CD, v > 0.
Similar equations can be also obtained for the six-

dimensional case.
Further, the auxiliary matrix (11) for the calcu-

lation of the moment of the resistance force has the
form

(
0 x2N x3N x4N x5N

−S 0 0 0 0

)
. (22)

Then the part of dynamical equations of motion cor-
responding to the rotation of the body about its center
of mass (in the Lie algebra so(5)) can be written in the
form

(λ4 +λ5)ω̇1 +(λ4−λ5)(ω4ω7 +ω3ω6 +ω2ω5) = 0,
(23)

(λ3 +λ5)ω̇2 +(λ5−λ3)(ω1ω5−ω3ω8−ω4ω9) = 0,
(24)

(λ2 +λ5)ω̇3 +(λ2−λ5)(ω4ω10−ω2ω8−ω1ω6) = 0,
(25)

(λ1 + λ5)ω̇4 + (λ5 − λ1)(ω3ω10 + ω2ω9 + ω1ω7) =

= −x5N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (26)

(λ3 +λ4)ω̇5 +(λ3−λ4)(ω7ω9 +ω6ω8 +ω1ω2) = 0,
(27)

(λ2 +λ4)ω̇6 +(λ4−λ2)(ω5ω8−ω7ω10−ω1ω3) = 0,
(28)

(λ1 + λ4)ω̇7 + (λ1 − λ4)(ω1ω4 − ω6ω10 − ω5ω9) =

= x4N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (29)

(λ2 +λ3)ω̇8 +(λ2−λ3)(ω9ω10 +ω5ω6 +ω2ω3) = 0,
(30)

(λ1 + λ3)ω̇9 + (λ3 − λ1)(ω8ω10 − ω5ω7 − ω2ω4) =

= −x3N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (31)

(λ1 + λ2)ω̇10 + (λ1 − λ2)(ω8ω9 + ω6ω7 + ω3ω4) =

= x2N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2. (32)

Similar equation can be written for E6.
Thus, the phase space of the system (17)–(21),

(23)–(32) of order 15 is the direct product of the f ve-
dimensional manifold and the Lie algebra so(5):

R1 × S4 × so(5). (33)

Note that the system (17)–(21), (23)–(32), due to
the dynamical symmetry

I2 = I3 = I4 = I5, (34)

possesses the following cyclic firs integrals:

ω1 ≡ ω0
1, ω2 ≡ ω0

2, ω3 ≡ ω0
3,

ω5 ≡ ω0
5, ω6 ≡ ω0

6, ω8 ≡ ω0
8. (35)

In the sequel, we consider the dynamics of the
system on zero levels:

ω0
1 = ω0

2 = ω0
3 = ω0

5 = ω0
6 = ω0

8 = 0. (36)

In the case of a six-dimensional body, we note
that, due to the dynamical symmetry

I2 = I3 = I4 = I5 = I6, (37)

the system possesses the following cyclic firs inte-
grals:

ω1 ≡ ω0
1, ω2 ≡ ω0

2, ω3 ≡ ω0
3, ω4 ≡ ω0

4, ω6 ≡ ω0
6,

ω7 ≡ ω0
7, ω8 ≡ ω0

8, ω10 ≡ ω0
10, (38)

ω11 ≡ ω0
11, ω13 ≡ ω0

13.

In this case, we also consider the dynamics of the
system on zero levels:

ω0
1 = ω0

2 = ω0
3 = ω0

4 = ω0
6 =

= ω0
7 = ω0

8 = ω0
10 = ω0

11 = ω0
13. (39)

If we consider a more general problem on the mo-
tion of a body under a tracking force T acting along
the straight line CD = Dx1 and providing the equal-
ity

v ≡ const, (40)
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then the system (17)–(21), (23)–(32) for a f ve-
dimensional body (and the corresponding system for
a six-dimensional body) contains the value T −
s(α)v2, σ = DC, instead of F1.

Choosing the value T of the tracking force appro-
priately, we can achieve (40). Indeed, formally ex-
pressing T from the system (17)–(21), (23)–(32) in
the case where cosα 6= 0 we obtain

T = Tv(α, β1, β2, β3, Ω) = mσ(ω2
4+ω2

7+ω2
9+ω2

10)+

+s(α)v2
[
1− mσ

3I2

sinα

cosα
Γv

(
α, β1, β2, β3,

Ω
v

)]
,

(41)
Γv

(
α, β1, β2, β3,

Ω
v

)
=

= x5N

(
α, β1, β2, β3,

Ω
v

)
sinβ1 sinβ2 sinβ3+

+x4N

(
α, β1, β2, β3,

Ω
v

)
sinβ1 sinβ2 cosβ3+

+x3N

(
α, β1, β2, β3,

Ω
v

)
sinβ1 cosβ2+

+x2N

(
α, β1, β2, β3,

Ω
v

)
cosβ1. (42)

To deduce Eq. (41), we have used the conditions
(35)–(40).

For a six-dimensional body, Eq. (41) has the form

T = Tv(α, β1, β2, β3, β4, Ω) =

= mσ(ω2
5 + ω2

9 + ω2
12 + ω2

14 + ω2
15)+

+s(α)v2
[
1− mσ

4I2

sinα

cosα
Γv

(
α, β1, β2, β3, β4,

Ω
v

)]
.

(43)
This procedure can be interpreted as follows.

First, we have transformed the system by using the
tracking force (control) that guarantees that the mo-
tion belongs to the class (40). Second, this procedure
allows one to reduce the order of the system. Indeed,
the system (17)–(21), (23)–(32) generates the follow-
ing independent system of eighth order:

α̇v cosα cosβ1 − β̇1v sinα sinβ1+

+ω10v cosα− σ ˙ω10 = 0, (44)

α̇v cosα sinβ1 cosβ2 + β̇1v sinα cosβ1 cosβ2−
−β̇2v sinα sinβ1 sinβ2−
−ω9v cosα + σω̇9 = 0, (45)

α̇v cosα sinβ1 sinβ2 cosβ3+

+β̇1v sinα cosβ1 sinβ2 cosβ3+

+β̇2v sinα sinβ1 cosβ2 cosβ3−
−β̇3v sinα sinβ1 sinβ2 sinβ3+

+ω7v cosα− σω̇7 = 0, (46)

α̇v cosα sinβ1 sinβ2 sinβ3+

+β̇1v sinα cosβ1 sinβ2 sinβ3+

+β̇2v sinα sinβ1 cosβ2 sinβ3+

+β̇3v sinα sinβ1 sinβ2 cosβ3−
−ω4v cosα + σω̇4 = 0, (47)

3I2ω̇4 = −x5N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (48)

3I2ω̇7 = x4N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (49)

3I2ω̇9 = −x3N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (50)

3I2ω̇10 = x2N

(
α, β1, β2, β3,

Ω
v

)
s(α)v2, (51)

which, in addition to the constant parameters listed
above, also contains the parameter v.

The system (44)–(51) is equivalent to the follow-
ing system:

α̇v cosα+

+v cosα{ω10 cosβ1 + [(ω7 cosβ3−
−ω4 sinβ3) sin β2 − ω9 cosβ2] sinβ1}+

+σ{− ˙ω10 cosβ1 + [ω̇9 cosβ2−
−(ω̇7 cosβ3 − ω̇4 sinβ3) sinβ2 sinβ1} = 0, (52)

β̇1v sinα+

+v cosα{[(ω7 cosβ3 − ω4 sinβ3) sin β2−
−ω9 cosβ2] cosβ1 − ω10 sinβ1}+

+σ{[ω̇9 cosβ2 − (ω̇7 cosβ3−
−ω̇4 sinβ3) sin β2] cosβ1 + ˙ω10 sinβ1} = 0, (53)

β̇2v sinα sinβ1+

+v cosα{[ω7 cosβ3−
−ω4 sinβ3] cosβ2 + ω9 sinβ2}+

+σ{−[ω̇7 cosβ3 − ω̇4 sinβ3] cosβ2−
−ω̇9 sinβ2} = 0, (54)

β̇3v sinα sinβ1 sinβ2+

+v cosα{−ω4 cosβ3 − ω7 sinβ3}+
+σ {ω̇4 cosβ3 + ω̇7 sinβ3} = 0, (55)

ω̇4 = − v2

3I2
x5N

(
α, β1, β2, β3,

Ω
v

)
s(α), (56)
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ω̇7 =
v2

3I2
x4N

(
α, β1, β2, β3,

Ω
v

)
s(α), (57)

ω̇9 = − v2

3I2
x3N

(
α, β1, β2, β3,

Ω
v

)
s(α), (58)

ω̇10 =
v2

3I2
x2N

(
α, β1, β2, β3,

Ω
v

)
s(α). (59)

Similar systems can be also obtained for a six-
dimensional body.

We introduce the new quasi-velocities in the sys-
tem. For this, we transform the values ω4, ω7, ω9, and
ω10 by the compositions of three rotations as follows:




z1

z2

z3

z4


 =

= T3,4(−β1) ◦ T2,3(−β2)◦

◦T1,2(−β3)




ω4

ω7

ω9

ω10


 , (60)

T3,4(β) =




1 0 0 0
0 1 0 0
0 0 cosβ − sinβ
0 0 sinβ cosβ


 ,

T2,3(β) =




1 0 0 0
0 cos β − sinβ 0
0 sinβ cosβ 0
0 0 0 1


 ,

T1,2(β) =




cosβ − sinβ 0 0
sinβ cosβ 0 0

0 0 1 0
0 0 0 1


 .

Thus, the following relations are valid:

z1 = ω4 cosβ3 + ω7 sinβ3,
z2 = (ω7 cosβ3 − ω4 sinβ3) cosβ2+

+ω9 sinβ2,
z3 = [(−ω7 cosβ3 + ω4 sinβ3) sinβ2+

+ω9 cosβ2] cosβ1 + ω10 sinβ1,
z4 = [(ω7 cosβ3 − ω4 sinβ3) sinβ2−
−ω9 cosβ2] sinβ1 + ω10 cosβ1.

(61)

For the case of a six-dimensional body, the new
quasi-velocities in the system are introduced as fol-
lows. We transform the values ω5, ω9, ω12, ω14, and

ω15 by the compositions of four rotations as follows:



z1

z2

z3

z4

z5




= T4,5(−β1) ◦ T3,4(−β2)◦ (62)

◦T2,3(−β3) ◦ T1,2(−β4)




ω4

ω9

ω12

ω14

ω15




.

We see from (52)–(59) that on the manifold

O1 =
{
(α, β1, β2, β3, ω4, ω7, ω9, ω10) ∈ R8 :

α =
π

2
k, β1 = πl1, β2 = πl2, k, l1, l2 ∈ Z

}
(63)

the system cannot be uniquely solved with respect
α̇, β̇1, β̇2, and β̇3. Therefore, on the manifold (63) the
uniqueness theorem is formally violated. Moreover,
for even k and any l1, and l2, the unambiguity appears
due to the degeneration of the spherical coordinates
(v, α, β1, β2, β3), whereas for odd k the uniqueness
theorem is explicitly violated due to the degeneration
of the firs equation in (52).

This implies that the system (52)–(59) outside the
manifold (63) is equivalent to the following system:

α̇ = −z4 +
σv

3I2

s(α)
cosα

Γv

(
α, β1, β2, β3,

Ω
v

)
, (64)

ż4 =
v2

3I2
s(α)Γv

(
α, β1, β2, β3,

Ω
v

)
−

−(z2
1 + z2

2 + z2
3)

cosα

sinα
+

+
σv

3I2

s(α)
sinα

{−z3∆v,1

(
α, β1, β2, β3,

Ω
v

)
+

+z2∆v,2

(
α, β1, β2, β3,

Ω
v

)
−

−z1∆v,3

(
α, β1, β2, β3,

Ω
v

)
}, (65)

ż3 = z3z4
cosα

sinα
+ (z2

1 + z2
2)

cosα

sinα

cosβ1

sinβ1
+

+
σv

3I2

s(α)
sinα

{z4∆v,1

(
α, β1, β2, β3,

Ω
v

)
−

−z2∆v,2

(
α, β1, β2, β3,

Ω
v

)
cosβ1

sinβ1
+
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+z1∆v,3

(
α, β1, β2, β3,

Ω
v

)
cosβ1

sinβ1
}−

− v2

3I2
s(α)∆v,1

(
α, β1, β2, β3,

Ω
v

)
, (66)

ż2 = z2z4
cosα

sinα
− z2z3

cosα

sinα

cosβ1

sinβ1
−

−z2
1

cosα

sinα

1
sinβ1

cosβ2

sinβ2
+

+
σv

3I2

s(α)
sinα

∆v,2

(
α, β1, β2, β3,

Ω
v

)
×

×
{
−z4 + z3

cosβ1

sinβ1

}
+

+
σv

3I2

s(α)
sinα

∆v,3

(
α, β1, β2, β3,

Ω
v

)
×

×
{
−z1

1
sinβ1

cosβ2

sinβ2

}
+

+
v2

3I2
s(α)∆v,2

(
α, β1, β2, β3,

Ω
v

)
, (67)

ż1 = z1z4
cosα

sinα
− z1z3

cosα

sinα

cosβ1

sinβ1
+

+z1z2
cosα

sinα

1
sinβ1

cosβ2

sinβ2
+

+
σv

3I2

s(α)
sinα

∆v,3

(
α, β1, β2, β3,

Ω
v

)
×

×
{

z4 − z3
cosβ1

sinβ1
+ z2

1
sinβ1

cosβ2

sinβ2

}
−

− v2

3I2
s(α)∆v,3

(
α, β1, β2, β3,

Ω
v

)
, (68)

β̇1 = z3
cosα

sinα
+

+
σv

3I2

s(α)
sinα

∆v,1

(
α, β1, β2, β3,

Ω
v

)
, (69)

β̇2 = −z2
cosα

sinα sinβ1
+

+
σv

3I2

s(α)
sinα sinβ1

∆v,2

(
α, β1, β2, β3,

Ω
v

)
, (70)

β̇3 = z1
cosα

sinα sinβ1 sinβ2
+

+
σv

3I2

s(α)
sinα sinβ1 sinβ2

∆v,3

(
α, β1, β2, β3,

Ω
v

)
,

(71)
∆v,1

(
α, β1, β2, β3,

Ω
v

)
=

= −x2N

(
α, β1, β2, β3,

Ω
v

)
sinβ1+

+x3N

(
α, β1, β2, β3,

Ω
v

)
cosβ1 cosβ2+

+x4N

(
α, β1, β2, β3,

Ω
v

)
cosβ1 sinβ2 cosβ3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cosβ1 sinβ2 sinβ3,

∆v,2

(
α, β1, β2, β3,

Ω
v

)
=

= −x3N

(
α, β1, β2, β3,

Ω
v

)
sinβ2+ (72)

+x4N

(
α, β1, β2, β3,

Ω
v

)
cosβ2 cosβ3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cosβ2 sinβ3,

∆v,3

(
α, β1, β2, β3,

Ω
v

)
=

= −x4N

(
α, β1, β2, β3,

Ω
v

)
sinβ3+

+x5N

(
α, β1, β2, β3,

Ω
v

)
cosβ3,

and the function Γv (α, β1, β2, β3, Ω/v) can be repre-
sented in the form (42).

Here and in the sequel, the dependence
on the groups of variables (α, β1, β2, β3, Ω/v)
is considered as the composite dependence on
(α, β1, β2, β3, z1/v, z2/v, z3/v, z4/v) due to (61).

A similar system can be obtained for a six-
dimensional rigid body.

The violation of the uniqueness theorem for the
system (52)–(59) on the manifold (63) for odd k can
be interpreted as follows: for odd k and for almost all
points of the manifold (63), there exists a nonsingular
phase trajectory of the system (52)–(59) that intersects
the manifold (63) orthogonally and also there exists a
phase trajectory that completely coincides with this
points at all moments of time. However, these trajec-
tories are distinct since they correspond to different
values of the tracking force.

3 Case where the Moment of Non-
conservative Forces Is Indepen-
dent of the Angular Velocity Ten-
sor

3.1 Reduced system

Similarly to the choice of Chaplygin analytic func-
tions (see [12, 13]), we choose the dynamical func-
tions s, x2N , x3N , x4N , and x5N in the following
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form:
s(α) = B cosα,

x2N

(
α, β1, β2, β3,

Ω
v

)
=

= x2N0(α, β1, β2, β3) = A sinα cosβ1,

x3N

(
α, β1, β2, β3,

Ω
v

)
=

= x3N0(α, β1, β2, β3) = A sinα sinβ1 cosβ2, (73)

x4N

(
α, β1, β2, β3,

Ω
v

)
=

= x4N0(α, β1, β2, β3) = A sinα sinβ1 sinβ2 cosβ3,

x5N

(
α, β1, β2, β3,

Ω
v

)
=

= x5N0(α, β1, β2, β3) = A sinα sinβ1 sinβ2 sinβ3,

where A,B > 0 and v 6= 0. This representation shows
that in the system considered, the moment of noncon-
servative forces is independent of the angular velocity
(it depends only on the angles α, β1, β2, and β3).

In this case, the func-
tions Γv (α, β1, β2, β3, Ω/v) , and
∆v,s (α, β1, β2, β3, Ω/v), s = 1, 2, 3, in the sys-
tem (64)–(71), have the following form:

Γv

(
α, β1, β2, β3,

Ω
v

)
= A sinα,

∆v,s

(
α, β1, β2, β3,

Ω
v

)
≡ 0, s = 1, 2, 3. (74)

In the six-dimensional case, the dynamical func-
tions x2N , x3N , x4N , x5N , and x6N have the form

x2N

(
α, β1, β2, β3, β4,

Ω
v

)
=

= x2N0(α, β1, β2, β3, β4) = A sinα cosβ1,

x3N

(
α, β1, β2, β3, β4,

Ω
v

)
=

= x3N0(α, β1, β2, β3, β4) = A sinα sinβ1 cosβ2,

x4N

(
α, β1, β2, β3, β4,

Ω
v

)
=

= x4N0(α, β1, β2, β3, β4) = (75)

= A sinα sinβ1 sinβ2 cosβ3,

x5N

(
α, β1, β2, β3, β4,

Ω
v

)
=

= x5N0(α, β1, β2, β3, β4) =

= A sinα sinβ1 sinβ2 sinβ3, cosβ4,

x6N

(
α, β1, β2, β3, β4,

Ω
v

)
=

= x6N0(α, β1, β2, β3, β4) =

= A sinα sinβ1 sinβ2 sinβ3 sinβ4.

Then, due to the nonintegrable constraint (40),
outside the manifold (63) the dynamical part of the
equations of motion (the system (64)–(71)) takes the
form of the analytic system

α′ = −z4 +
σABv

3I2
sinα, (76)

z′4 =
ABv2

3I2
sinα cosα− (z2

1 +z2
2 +z2

3)
cosα

sinα
, (77)

z′3 = z3z4
cosα

sinα
+ (z2

1 + z2
2)

cosα

sinα

cosβ1

sinβ1
, (78)

z′2 = z2z4
cosα

sinα
− z2z3

cosα

sinα

cosβ1

sinβ1
−

−z2
1

cosα

sinα

1
sinβ1

cosβ2

sinβ2
, (79)

z′1 = z1z4
cosα

sinα
− z1z3

cosα

sinα

cosβ1

sinβ1
=

+z1z2
cosα

sinα

1
sinβ1

cosβ2

sinβ2
, (80)

β′1 = z3
cosα

sinα
, (81)

β′2 = −z2
cosα

sinα sinβ1
, (82)

β′3 = z1
cosα

sinα sinβ1 sinβ2
. (83)

We introduce the dimensionless variables, param-
eters, and differentiation as follows:

zk 7→ n0vzk, k = 1, 2, 3, 4, n2
0 =

AB

3I2
, (84)

b = σn0, < · >= n0v <′> .

We reduce the system (76)–(83) to the form

α′ = −z4 + b sinα, (85)

z′4 = sin α cosα− (z2
1 + z2

2 + z2
3)

cosα

sinα
, (86)

z′3 = z3z4
cosα

sinα
+ (z2

1 + z2
2)

cosα

sinα

cosβ1

sinβ1
, (87)

z′2 = z2z4
cosα

sinα
− z2z3

cosα

sinα

cosβ1

sinβ1
−

−z2
1

cosα

sinα

1
sinβ1

cosβ2

sinβ2
, (88)
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z′1 = z1z4
cosα

sinα
− z1z3

cosα

sinα

cosβ1

sinβ1
+

+z1z2
cosα

sinα

1
sinβ1

cosβ2

sinβ2
, (89)

β′1 = z3
cosα

sinα
, (90)

β′2 = −z2
cosα

sinα sinβ1
, (91)

β′3 = z1
cosα

sinα sinβ1 sinβ2
. (92)

We see that the eighth-order system (85)–(92),
which can be considered on the tangent bundle TS4

which can be considered on the tangent bundle S4,
contains an independent seventh-order system (85)–
(91) on its own seven-dimensional manifold.

In the case of a six-dimensional body, the corre-
sponding system of dynamical equations takes the fol-
lowing form:

α′ = −z5 + b sinα, (93)

z′5 = sinα cosα− (z2
1 + z2

2 + z2
3 + z2

4)
cosα

sinα
, (94)

z′4 = z4z5
cosα

sinα
+ (z2

1 + z2
2 + z2

3)
cosα

sinα

cosβ1

sinβ1
, (95)

z′3 = z3z5
cosα

sinα
− z3z4

cosα

sinα

cosβ1

sinβ1
−

−(z2
1 + z2

2)
cosα

sinα

1
sinβ1

cosβ2

sinβ2
, (96)

z′2 = z2z5
cosα

sinα
− z2z4

cosα

sinα

cosβ1

sinβ1
+

+z2z3
cosα

sinα

1
sinβ1

cosβ2

sinβ2
+

+z2
1

cosα

sinα

1
sinβ1

1
sinβ2

cosβ3

sinβ3
, (97)

z′1 = z1z5
cosα

sinα
− z1z4

cosα

sinα

cosβ1

sinβ1
+

+z1z3
cosα

sinα

1
sinβ1

cosβ2

sinβ2
−

−z1z2
cosα

sinα

1
sinβ1

1
sinβ2

cosβ3

sinβ3
, (98)

β′1 = z4
cosα

sinα
, (99)

β′2 = −z3
cosα

sinα sinβ1
, (100)

β′3 = z2
cosα

sinα sinβ1 sinβ2
, (101)

β′4 = −z1
cosα

sinα sinβ1 sinβ2 sinβ3
. (102)

For the complete integration of the system (85)–
(92), we need, in the general case, seven independent
firs integrals. However, after the substitution

w4 = z4, w3 =
√

z2
1 + z2

2 + z2
3 ,

w2 =
z2

z1
, w1 =

z3√
z2
1 + z2

2

, (103)

the system (85)–(92) splits as follows:

α′ = −w4 + b sinα, (104)

w′4 = sin α cosα− w2
3

cosα

sinα
, (105)

w′3 = w3w4
cosα

sinα
, (106)

w′2 = d2(w4, w3, w2, w1;α, β1, β2, β3)×
×1+w2

2
w2

cos β2

sin β2
,

β′2 = d2(w4, w3, w2, w1; α, β1, β2, β3),
(107)

w′1 = d1(w4, w3, w2, w1;α, β1, β2, β3)×
×1+w2

1
w1

cos β1

sin β1
,

β′1 = d1(w4, w3, w2, w1; α, β1, β2, β3),
(108)

β′3 = d3(w4, w3, w2, w1; α, β1, β2, β3), (109)

d1(w4, w3, w2, w1; α, β1, β2, β3) =
= Z3(w4, w3, w2, w1) cos α

sin α ,
d2(w4, w3, w2, w1; α, β1, β2, β3) =
= −Z2(w4, w3, w2, w1) cos α

sin α sin β1
,

d3(w4, w3, w2, w1; α, β1, β2, β3) =
= Z1(w4, w3, w2, w1) cos α

sin α sin β1 sin β2
.

(110)

Moreover,

zk = Zk(w4, w3, w2, w1), k = 1, 2, 3, (111)

due to the substitution (103).
We see that the eighth-order system splits into

independent subsystems of lower orders: the system
(104)–(106) of third order and the systems (107) and
(108) of second order (of course, after a change of the
independent variable). Thus, for the complete integra-
bility of the system (104)–(109) we need two indepen-
dent firs integrals of the system (104)–(106), one firs
integral of each of the systems (107) and (108), and
an additional firs integral that “attaches” Eq. (109).

Note that the system (104)–(106) can be consid-
ered on the tangent bundle TS2 of the twodimensional
sphere S2.
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In the case of a six-dimensional rigid body, the
corresponding change of variables has the form

w5 = z5,

w4 =
√

z2
1 + z2

2 + z2
3 + z2

4 , w3 = z2
z1

,

w2 = z3√
z2
1+z2

2

, w1 = z4√
z2
1+z2

2+z2
3

.
(112)

The system (93)–(102) splits as follows:

α′ = −w5 + b sinα, (113)

w′5 = sin α cosα− w2
4

cosα

sinα
, (114)

w′4 = w4w5
cosα

sinα
, (115)

w′3 =
= d3(w5, w4, w3, w2, w1;α, β1, β2, β3, β4)×

×1+w2
3

w3

cos β3

sin β3
,

β′3 = d3(w5, w4, w3, w2, w1;α, β1, β2, β3, β4),
(116)

w′2 =
= d2(w5, w4, w3, w2, w1;α, β1, β2, β3, β4)×

×1+w2
2

w2

cos β2

sin β2
,

β′2 = d2(w5, w4, w3, w2, w1;α, β1, β2, β3, β4),
(117)

w′1 =
= d1(w5, w4, w3, w2, w1;α, β1, β2, β3, β4)×

×1+w2
1

w1

cos β1

sin β1
,

β′1 = d1(w5, w4, w3, w2, w1;α, β1, β2, β3, β4),
(118)

β′4 = d4(w5, w4, w3, w2, w1;α, β1, β2, β3, β4),
(119)

d1(w5, w4, w3, w2, w1;α, β1, β2, β3, β4) =
= Z4(w5, w4, w3, w2, w1) cos α

sin α ,
d2(w5, w4, w3, w2, w1;α, β1, β2, β3, β4) =

= −Z3(w5, w4, w3, w2, w1) cos α
sin α sin β1

,

d3(w5, w4, w3, w2, w1;α, β1, β2, β3, β4) =
= Z2(w5, w4, w3, w2, w1) cos α

sin α sin β1 sin β2
,

d4(w5, w4, w3, w2, w1;α, β1, β2, β3, β4) =
= −Z1(w5, w4, w3, w2, w1) cos α

sin α sin β1 sin β2 sin β3
,

(120)
and

zk = Zk(w5, w4, w3, w2, w1), k = 1, 2, 3, 4, (121)

due to the substitution (112).

3.2 Complete list of invariant relations

In this section, we present results for a f ve-
dimensional rigid body; for six-dimensional bodies,
results are similar.

The system (104)–(106) is similar to the system
of equations of dynamics of a three-dimensional rigid
body in a nonconservative force field

First, to the third-order system (104)–(106), we
put in correspondence the following nonautonomous
second-order system:

dw4
dα = sin α cos α−w2

3 cos α/ sin α
−w4+b sin α ,

dw3
dα = w3w4 cos α/ sin α

−w4+b sin α .
(122)

Using the substitution τ = sinα, we rewrite the
system (122) in the algebraic form

dw4
dτ = τ−w2

3/τ
−w4+bτ ,

dw3
dτ = w3w4/τ

−w4+bτ .
(123)

Further, introducing the homogeneous variables
by the fornulas

w3 = u1τ, w4 = u2τ, (124)

we reduce the system (123) to the following form:

τ du2
dτ + u2 = 1−u2

1
−u2+b , τ du1

dτ + u1 = u1u2
−u2+b , (125)

which is equivalent to the following:

τ du2
dτ = 1−u2

1+u2
2−bu2

−u2+b , τ du1
dτ = 2u1u2−bu1

−u2+b . (126)

To the second-order system (126), we put in cor-
respondence the nonautonomous first-orde equation

du2

du1
=

1− u2
1 + u2

2 − bu2

2u1u2 − bu1
, (127)

which can be easily reduced to the complete differen-
tial form:

d

(
u2

2 + u2
1 − bu2 + 1
u1

)
= 0. (128)

Thus, Eq. (127) has the following firs integral:

u2
2 + u2

1 − bu2 + 1
u1

= C1 = const, (129)

which in the old variables has the form

w2
4 + w2

3 − bw4 sinα + sin2 α

w3 sinα
= C1 = const.

(130)

Remark 1 Consider the system (104)–(106) with
variabledissipationwith zero mean (see [14, 15, 16]),
which becomes conservative forb = 0:

α′ = −w4, w′4 = sin α cosα− w2
3

cos α
sin α ,

w′3 = w3w4
cos α
sin α .

(131)
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It possesses the following two analyticfirst integrals:

w2
4 + w2

3 + sin2 α = C∗
1 = const, (132)

w3 sinα = C∗
2 = const. (133)

Obviously, the ratio of two first integrals (132) and
(133) is also a first integral of the system (131). How-
ever, forb 6= 0, the functions

w2
4 + w2

3 − bw4 sinα + sin2 α (134)

and (133) are not first integrals of the system (104)–
(106), but their ratio is a first integral of the system
(104)–(106) for anyb.

Further, we fin an explicit form of the additional
firs integral of the third-order system (104)–(106).
We transform the invariant relation (129) for u1 6= 0
as follows:
(

u2 − b

2

)2

+
(

u1 − C1

2

)2

=
b2 + C2

1

4
− 1. (135)

We see that the parameters of this invariant rela-
tions must satisfy the condition

b2 + C2
1 − 4 ≥ 0, (136)

and the phase space of the system (104)–(106) splits
into the family of surfaces determined by Eq. (135).

Thus, due to the relation (129), the firs equation
of the system (126) has the form

τ
du2

dτ
=

2(1− bu2 + u2
2)− C1U1(C1, u2)

−u2 + b
, (137)

U1(C1, u2) =
1
2
{C1 ±

√
C2

1 − 4(u2
2 − bu2 + 1)};

(138)
here the integration constant C1 is define by the con-
dition (136).

Therefore, the quadrature that determines the ad-
ditional firs integral of the system (104)–(106) has the
form

∫
dτ

τ
=

∫ (b− u2)du2

2(1− bu2 + u2
2)− C1{W}/2

, (139)

W = C1 ±
√

C2
1 − 4(u2

2 − bu2 + 1).

Obviously, the left-hand side (up to an additive
constant) is equal to ln | sinα|. If

u2 − b

2
= r1, b2

1 = b2 + C2
1 − 4, (140)

then the right-hand side of Eq. (139) becomes

−1
4

∫
d(b2

1 − 4r2
1)

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

−

−b

∫
dr1

(b2
1 − 4r2

1)± C1

√
b2
1 − 4r2

1

=

= −1
2

ln

∣∣∣∣∣∣

√
b2
1 − 4r2

1

C1
± 1

∣∣∣∣∣∣
± b

2
I1, (141)

I1 =
∫

dr3√
b2
1 − r2

3(r3 ± C1)
, r3 =

√
b2
1 − 4r2

1.

(142)
In the calculation of the integral (142), the follow-

ing three cases are possible.
I. b > 2.

I1 = − 1
2
√

b2 − 4
×

× ln

∣∣∣∣∣∣

√
b2 − 4 +

√
b2
1 − r2

3

r3 ± C1
± C1√

b2 − 4

∣∣∣∣∣∣
+

+
1

2
√

b2 − 4
×

× ln

∣∣∣∣∣∣

√
b2 − 4−

√
b2
1 − r2

3

r3 ± C1
∓ C1√

b2 − 4

∣∣∣∣∣∣
+ (143)

+const.

II. b < 2.

I1 =
1√

4− b2
arcsin

±C1r3 + b2
1

b1(r3 ± C1)
+ const. (144)

III. b = 2.

I1 = ∓
√

b2
1 − r2

3

C1(r3 ± C1)
+ const. (145)

Returning to the variable

r1 =
w4

sinα
− b

2
, (146)

we obtain the fina formulas for I1:
I. b > 2.

I1 = − 1
2
√

b2 − 4
ln

∣∣∣∣∣∣

√
b2 − 4± 2r1√
b2
1 − 4r2

1 ± C1

± C1√
b2 − 4

∣∣∣∣∣∣
+
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+
1

2
√

b2 − 4
ln

∣∣∣∣∣∣

√
b2 − 4∓ 2r1√
b2
1 − 4r2

1 ± C1

∓ C1√
b2 − 4

∣∣∣∣∣∣
+

(147)
+const.

II. b < 2.

I1 =
1√

4− b2
arcsin

±C1

√
b2
1 − 4r2

1 + b2
1

b1(
√

b2
1 − 4r2

1 ± C1)
+ const.

(148)
III. b = 2.

I1 = ∓ 2r1

C1(
√

b2
1 − 4r2

1 ± C1)
+ const. (149)

Thus, we have found the additional firs integral
for the third-order system (104)–(106) and hence we
have a complete list of firs integrals, which are tran-
scendental functions of their phase variables.

Remark 2 In the expression of the first integral we
must formally substitute the left-hand side of the first
integral (129) instead ofC1.

Then the additional firs integral takes the follow-
ing structure (which is similar to the transcendental
firs integral in the fla dynamics):

ln | sinα|+ G2

(
sinα,

w4

sinα
,

w3

sinα

)
= C2 = const.

(150)
Thus, for the eighth-order system (104)–(109),

we have found two independent firs integrals. As
was said above, for its complete integrability, we need
one firs integral for the separated systems (107) and
(108) and an additional firs integral that “attaches”
Eq. (109).

To fin a firs integral of separated systems
(107) and (108), we consider the following first-orde
nonautonomous equations:

dws

dβs
=

1 + w2
s

ws

cosβs

sinβs
, s = 1, 2. (151)

The last equalities lead to the required invariant
relations

√
1 + w2

s

sinβs
= Cs+2 = const, s = 1, 2. (152)

Further, to fin the additional firs integral that
“attaches” Eq. (109), we put in correspondence to
Eqs. (109) and (107) the nonautonomous equation

dw2

dβ3
= −(1 + w2

2) cos β2. (153)

Since, due to (152),

C4 cosβ2 = ±
√

C2
4 − 1− w2

2, (154)

we have

dw2

dβ3
= ∓ 1

C4
(1 + w2

2)
√

C2
4 − 1− w2

2. (155)

Then, integrating the last equality, we arrive at the
following quadrature:

∓(β3 + C5) =
∫

C4dw2

(1 + w2
2)

√
C2

4 − 1− w2
2

, (156)

C5 = const.

Integrating this, we obtain the equality

∓tg(β3 + C5) =
C4w2√

C2
4 − 1− w2

2

, (157)

C5 = const.

Finally, we obtain the additional firs integrals
that “attaches” Eq. (109):

arctg
C4w2√

C2
4 − 1− w2

2

±β3 = C5, C5 = const. (158)

Thus, in the case considered, the system of dy-
namical equations (17)–(21), (23)–(32) under the con-
dition (73) has 12 invariant relation: the analytic non-
integrable constraint (40), the cyclic firs integrals (35)
and (36), the firs integral (130), the firs integral ex-
pressed by the relations (143)–(150), which is a tran-
scendental function of the phase variables (it is ex-
pressed as a finit combination of elementary func-
tions), and the transcendental firs integrals (152) and
(158).

Theorem 3 The system (17)–(21), (23)–(32) under
the conditions (40), (73), (36) possesses 12 invari-
ant relations (a complete set ). Five of these relations
are transcendental functions (from the point of view of
complex analysis). All these relations are expressed as
finite combinations of elementary functions.

A similar theorem is also valid for the six-
dimensional case.
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4 Conclusion

Activity contains a review of results on the integrabil-
ity of equations of motions in the dynamics of f ve-
and six-dimensional rigid bodies in nonconservative
force fields Such problems are governed by dynami-
cal systems with variable dissipation with zero mean.
Moreover, such systems often possess a complete list
of firs integrals expressed through elementary func-
tions.

We also presented a method of reduction of sys-
tems with right-hand sides containing polynomial of
trigonometric functions to systems with polynomial
right-hand sides, which allows one to fin firs inte-
grals (or prove their absence) for systems of a more
general form, not only those having specifie symme-
tries (see also [9, 10, 12]).
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